Transformation of Stresses/Mohr’s Circle

              

Construction of Mohr’s Circle starts with identifying “faces” on the element.

Each face of the element corresponds to a point on Mohr’s Circle.  See the figure below.

            

 

A = a point on Mohr’s circle corresponding to “face A” on the element

B = a point on Mohr’s circle corresponding to “face B” on the element

C = center of the circle with coordinates   ( σc , 0 )

 

Steps to Plot Mohr’s Circle

  1. Locate the center of the circle     σc  =  (σx  +  σy)/2  and  t  =  0
  2. Determine the radius from geometry   r  =  sqrt { [(σx  -  σy)/2]2    +  τ xy2 }
  3. Note:   tan 2θ  =  τ xy /  [(σx  -  σy )/2]

 

Sign convention on Mohr’s circle: 

+  normal stresses indicate tension   and  - normal stresses indicate compression

 

+   shearing stresses are counterclockwise (CCW)   and    – shearing stresses are (CW)

 

Important points to note regarding Mohr’s Circle

 

  1. A point on Mohr’s circle represents a face on the element.
  2. Rotation of    on Mohr’s circle yields a rotation of   θ  on the element

both in the same direction.

  1. Faces on which there is no shear stress are the principal faces and give the maximum and minimum normal stresses (the principal stresses).
  2. The radius of Mohr’s circle gives the maximum shearing stress.
  3. A convenient check on your construction is:    σx  +  σy  =  σ1  +  σ2

where  σ1  and  σ2   are the principal stresses

 

Click here for examples.

 


Return to Notes on Solid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.