Mohr’s Circle - Stress

 

Example:  The element shown below has the following stresses acting on its faces.

     σx  =  10 ksi,   σy  =  2 ksi,   τxy =  0.  Construct Mohr’s Circle.  Determine the

maximum and minimum normal stresses and the maximum shear stress.  Find the

angle of the plane on which the maximum shear stress acts.

                                                             

 

Strategy:  Identify face A and face B on the element.  Construct Mohr’s Circle.  Rotate from

plane A to determine the angle of the plane on which the maximum shear stress occurs.

 

The center of the circle is at  σC =  (σx + σy)/2 = 10 + 2)/2  =  6  and  τxy = 0.

So the radius of the circle is  σAσC  =  4 ksi

Note:  σmax = 10 ksi,       σmin = 2 ksi,       τmax = radius = 4 ksi

                           

                            

 

The principal stresses σ1  = 10 ksi,    σ2  =  2 ksi  acting on face A and face B respectively.

                            

The maximum shear stress, τmax =  4 ksi   occurs at D.  So rotation from A to D on Mohr’s

circle is 90o clockwise.  Rotation on the element is half that.  So the plane on which the

maximum shear stress occurs is 45o clockwise from face A of the element shown above.

On face D on the element,  σx = 6 ksi and τxy = 4 ksi.  Click here to view this element.

 

Click here for another example.

 

Return to Notes on Solid Mechanics

Copyright © 2019 Richard C. Coddington
All rights reserved.