Summary for Open Channel Flow

 

 

 

1.   For equilibrium flow apply Manning's equation:  (semi-empirical relation)                         

                           Q  = (k/n) A  (RH)2/3  So 1/2

where    k = 1 for metric  and  1.49 for English units

               n  =  roughness coefficient (depends on material for channel)

             A is the x-sectional area (any shape)

              RH  =  hydraulic radius  =  area / wetted perimeter

              So  = slope of channel

Applications involving equilibrium (or uniform) flow 

                              Given Data                                               Solve for:    

Q, L, ν, size, shape, roughness coefficient

           So

So, L, ν, size, shape, roughness coefficient

       V, y, Q

So, Q, L, ν, size, shape, roughness coefficient

       RH, y

 

Solve first two by direct calculation.  Last one requires iteration.  (Hardest type)

 

 

2.   For gradually varied flow in rectangular channels of width, w:

Conservation of mass:                   w y1 V1  =  w y2 V2  =  Q

Conservation of Energy:     y1  +  V12 / 2g  =  y2  +  V22 / 2g  +  ( Sf  ˗ So ) L   

 

where   y1  and  y2  are the upstream and downstream depths

             V1  and  V2  are the upstream and downstream fluid speeds

              Sf  is the head loss per unit length of channel

              So is the channel slope

              L  is the length along the channel

 

          Sf    [ (k/n) RH1/6 ] -2  V2 / RH

 

Since changes in y and V are gradual, the energy loss can be represented by the

Manning equation and can be used to evaluate the slope for gradually varied flow.

 

In addition, construct a specific energy plot to aid in evaluation.

 

 

Click here to continue summary for open channel flow.

 

 

Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.