Relative Velocity and Acceleration with Translating and Rotating Frames (cont)

 

 

So            d( ω x rAB ) /dt  =  α x rAB  +  [ω x (ω x rAB + vB|1 )] 

 

   d( ω x rAB ) /dt  =  α x rAB  +  ω x (ω x rAB )  +  ω x  vB|1 

 

          here    dω / dt  =  α    where α  is the angular acceleration of body 1 in frame F

 

 

Now collect terms for   d vB /dt  =  d vA /dt + d vB|1 /dt  + d( ω x rAB ) /dt   

 

                        aB  =  aA  + ( aB|1  +  ω x vB|1 ) + α x rAB  +  ω x (ω x rAB )  +  ω x  vB|1

or

                        aB  =  aA  +  aB|1  +  2 ω x vB|1 ) + α x rAC  +  ω x (ω x rac )

 

 

and for motion in a plane:

 

vB  =    vA + vB|1  +  ω x rAB

Relative Velocity Equation

 

              aB  =  aA  +  aB|1  + α x rAB  - ω2 rAB +  2 ω x vB|1 

 

                     Relative   Acceleration  Equation

 

 

 

Meaning of terms:

 

               vB is the  velocity of B with respect to the fixed frame F

               vA is the  velocity of A with respect to the fixed frame F

               vB|1  is the  velocity of B with respect to A in the  x1y1   frame

                   ω is the angular velocity of body 1 in fixed frame F

                 rAB is the position vector from  A  to   B

 

                 aB  is the acceleration of point B with respect to the fixed frame  F

                 aA  is the acceleration of point A with respect to the fixed frame  F

                aB|1  is the acceleration of B relative to A in the  x1y1  frame

     2 ω x vB|1  is the Coriolis acceleration of B in fixed frame F

          α x rAB is tangential acceleration of B relative to A in fixed frame F

                   α is the angular acceleration of body 1 in fixed frame F

         - ω2 rAB  is the normal acceleration of B relative to A in fixed frame F

 

 

Click here for examples.

 

 

 



   Return to Notes on Dynamics


Copyright © 2019 Richard C. Coddington
All rights reserved.