Principle of Work/Energy  Plane Motion  (example continued)

 

 

Bar, cde, of length R is fastened to a ring of radius R as shown below where  d  denotes the

center of mass of the bar and  c  denotes the center of mass of the ring.   Both the bar and ring

are of mass m.  The bar-ring assembly is initially at rest when it starts to roll down the incline,

at angle β, with an angular speed, ω.  Determine the kinetic energy of the assembly as a function

of    m, R, and ω.

 

 

                                                    

 

 

Strategy:  The kinetic energy of a rigid body combines that for translation of the center of

mass and that for rotation about the center of mass.  Kinetic energy is a scalar.  So the total

kinetic energy is that for the bar plus that for the ring.

 

 

Solution:  First consider the bar.  Let vd denote the speed of the center of mass of the bar

and  ω  the angular speed of the bar.  The kinetic energy of the bar is then.

 

                                   Tbar  =  (1/2) m vd2  +  (1/2) Izzd ω2

 

Izzd  is the mass moment of inertia of the bar about its center of mass and equals  (1/12) mR2 

 

From kinematics (for rolling)   vc  =  R ω   Also  vd =  vc  +  ω k x ( ˗R/2 ) j

 

So   vd =  R ω i  +  (R/2) ω i  =  (3R/2) ω i    and   vd  =  (3R/2) ω

 

So the kinetic energy for the bar is  Tbar  =  (1/2) m [ (3R/2)ω ]2  +  (1/24) mR2 ω2  =  (7/6) mR2 ω2 

 

Next consider the ring.  Tring  =  (1/2) m vc2  +  (1/2) Izzc ω2    where  Izzc  =  mR2

 

                Tring  =  (1/2) m()2  +  (1/2) mR2 ω2   =  mR2 ω2  

 

For the assembly of the bar and ring:  T  =   (7/6) mR2 ω2  +  mR2 ω2   =  (13/6) mR2 ω2   (result)

 

 

Click here to continue with this example of work and energy.

 



   Return to Notes on Dynamics

Copyright © 2019 Richard C. Coddington
All rights reserved.