Kinetic Energy of a Body in a Plane

 

 

Example:  Bar, cde, of length R is fastened to a ring of radius R as shown below where  d  denotes

the center of mass of the bar and  c  denotes the center of mass of the ring.   Both the bar and ring

are of mass m.  The bar-ring assembly is initially at rest when it starts to roll down the incline, at

angle β, with an angular speed, ω.  Determine the kinetic energy of the assembly as a function of

m, R, and ω.

 

                                               

 

 

Strategy:  The kinetic energy of a rigid body combines that for translation of the center of mass

and that for rotation about the center of mass.  Kinetic energy is a scalar.  So the total kinetic

energy is that for the bar plus that for the ring.

 

 

First consider the bar.  Let vd denote the speed of the center of mass of the bar

and  ω  the angular speed of the bar.  The kinetic energy of the bar is then.

 

                         Tbar  =  (1/2) m vd2  +  (1/2) Izzd ω2

 

Izzd  is the mass moment of inertia of the bar about its center of mass and equals  (1/12) mR2 

 

From kinematics (for rolling)   vc  =  R ω   Also  vd =  vc  +  ω k x ( ˗R/2 ) j

 

So   vd =  R ω i  +  (R/2) ω i  =  (3R/2) ω i    and   vd  =  (3R/2) ω

 

So the kinetic energy for the bar is  Tbar  =  (1/2) m [ (3R/2)ω ]2  +  (1/24) mR2 ω2  =  (7/6) mR2 ω2 

 

 

Next consider the ring.       Tring  =  (1/2) m vc2  +  (1/2) Izzc ω2    where  Izzc  =  mR2

 

                                              Tring  =  (1/2) m()2  +  (1/2) mR2 ω2   =  mR2 ω2  

 

For the assembly of the bar and ring:  T  =   (7/6) mR2 ω2  +  mR2 ω2   =  (13/6) mR2 ω2   (result)

 

 

 



   Return to Notes on Dynamics


Copyright © 2019 Richard C. Coddington
All rights reserved.