Rolling

 

 

Example:  A hula hoop (shown below) of radius, R, rolls to the right with a constant velocity,  vC i  ft/sec.  At the instant shown point B on the hoop is to the right of the center, C, of the hula hoop. 

Point  A  is the point of contact of the hula hoop with the horizontal surface.  Find | dvB/dt | , the

radius of  curvature of point B at the instant shown, and the location of the center of curvature.

 

 

                                       

 

 

Strategy:  Apply the relative velocity and relative acceleration equations between points C and A

and between points C and B.  Find the unit tangential vector at B from the velocity of point B.  Use

it to find the tangential component of acceleration. 

 

 

Solution:      vC  =  vA  +  vC/A   =  0  +  ˗ ω k x R j  =  R ω i      So   vC  =  R ω ,   ω = vC / R

 

Since  vC = constant,  aC  =  dvC/dt  = 0   and also    α  =  /dt  =  0

 

     vB  =  vC  +  vB/C   =  vC i   +  ˗ ω k x R i  =  vC i   +  ˗  R ω j  =  vC i   +  ˗ vC j 

 

So   vB  =  vC ( i ˗ j )     Then   et  =  vB / | vB |  =  ( i  ˗  j ) / √ 2  (unit tangential vector at B)

 

     aB  =  aC  +  aB/C |n  +  aB/C |t    =  0  ˗ ω2 R i  + α k x R i  =   ˗ ω2 R i 

 

Now   aB|t  =  | dvB/dt |  =  aBet  =  ˗ ω2 R i  • ( i  ˗  j ) / √ 2  =  ˗ R ω2 / √ 2    (result)

 

 

 By vector addition,      aB  =   aB n  +  aB t

 

                                     aB2  =  aBn2  +  aBt2  =  (˗ R ω2 )2  =  ( vB2 / ρ )2 +  (˗ R ω2 / √ 2 )2  

 

   ( 2vC 2 )2/ ρ2  =  R2 ω4 / 2    but   vC  =  R ω      So     4 ()4 / ρ2  =  R2 ω4 / 2   

 

 

       4 ( R / ρ )2  =  1/2      Therefore   ρ  =  √ 8 R  =  ( 2√ 2) R                   (result)

 

Note:  The center of curvature for point B, at this instant, is a distance of  √ 8 R  from B along the

line from B to and beyond A.

 



   Return to Notes on Dynamics


Copyright © 2019 Richard C. Coddington
All rights reserved.