Relative Acceleration for Links with 2 points in the same link

 

 

Example:  The planar mechanism shown below consists of two rigid links, AB of length L and BC

of length 2L, pinned at A, B, and C.  The slider ,C, moves along the guide track at an angle θ.  At the instant shown, link AB rotates counterclockwise at a constant angular velocity given by  ω =  ωo k rad/sec .  Find the angular acceleration of link BC, the acceleration of the slider, C.  All lengths are

in feet.

                                                    

 

 

Strategy:  Apply the relative velocity and relative acceleration equations between points A and B

on link AB and between B and C on link BC. 

 

 

Solution:    aB  =  aA  +  aB/A |n   +  aB/A|t   =  ˗ ωo2 L i  +  αAB x L i  =   ˗ ωo2 L i

       

          aC  =  aB  +  aC/B |n   +  aC/B|t   =  ˗ ωo2 L i  ˗ ωBC2 (2L) i  +  αBC k x 2L i 

       

          aC  = ( ˗ ωo2 L ˗  2L ωBC2) i  +  ( 2L αBC ) j 

 

Since the slider is constrained to move along the guide       aC  =   aC (  cos θ i  +  sin θ j  )

 

 So                        aC (  cos θ i  +  sin θ j )  =  ( ˗ ωo2 L ˗  2L ωBC2) i  +  ( 2L αBC ) j 

 

Equate scalar components:     aC  cos θ  =   ˗ ωo2 L ˗  2L ωBC2   

 

and                                          aC  sin θ   =   2L αBC   =  aCy

 

From the relative velocity equation (for this example previously calculated)     ωBC = ˗ (1/2) ωo

    

 giving       aC  =  ˗ 3Lωo2 sec θ / 2       and        aCx  =   ˗ 3Lωo2 / 2

 

Now from    aC  sin θ   =   2L αBC   ,   αBC  = (˗ 3Lωo2 / 2 ) tan θ / 2L  =  ˗ (3/4) ωo2 tan θ

 

                              αBC  =  ˗ (3/4) ωo2  tan θ k   rad/sec2     (result)

 

Therefore                 aCy  =  ˗ (3/2) Lωo2  tan θ

 

                 aC  =  ˗ 3Lωo2 / 2  i  +  ˗ (3/2) Lωo2  tan θ  j     ft/sec2     (result)

 

 

 



   Return to Notes on Dynamics


Copyright © 2019 Richard C. Coddington
All rights reserved.