Principle of Work and Energy for Particles in a Plane  (example continued)

 

 

After impact block A continues up and block D continues down a distance, c, to its final position, 3.

 

      W2-3  =  T3  ˗  T2   which yields:  ˗ wA c  +  wD c  = 0  ˗  (1/2) {[( wA + wD)]/g} v22

 

                          c  =  [ (1/2) {[( wA + wD)]/g} (2/7)dg ] / (wA ˗ wD )  =  (5/7) d     (result)

 

 

Also, find the maximum distance, h, that  the rider, C, rebounds above the stop after striking it.

 

 

In this example the coefficient of restitution, e, relates the relative speed of the collar, C, to the

stop after impact to that before impact as follows:  (denote by  '  the condition immediately after

impact)

 

     e  =   ˗  v rel after  /  vrel before   For this example:   e  =  ˗  (v2' ˗ 0)  / (v2 ˗ 0)  =  ˗  v2'  / v2 

 

 

For maximum rebound no energy is lost so  e = 1  and     v2'  =  ˗  v2 

 

 

                                              

 

 

Denote by position 4 the maximum height, h, of the collar above the stop.  Then apply the

principle of work and energy again to the collar.

 

       W2'-4  =  T4  ˗  T2'   which yields:       ˗ wC h  = 0  ˗  (1/2) {[(  wC )]/g} v22

 

Recall   v22  =  (2/7) d g             so     h  =  (1/2) (2/7) dg / g  =  (1/7 ) d              (result)

 

 

                                                        



   Return to Notes on Dynamics

Copyright © 2019 Richard C. Coddington
All rights reserved.