Example using Mass Center Moment Form  (continued)

 

Ex. 1  (continued)  

For the hub:  IzzC = mhub ( ro2 -   ri2 )  =  (2/32.2) [ (3/12)2 – (2/12)2 ]  slug ft2

For the entire wheel sum each part to get total:  IzzC = 0.755 slug ft2     (result)

Now the equations of motion in scalar form are as follows:

       ( P – F)   =  m aCX                                        (1)   (from Euler’s 1st law)
  ( N – W)  )  =  m aCY   =  0                               (2)    (from Euler’s 1st
            -  FR  =  IzzC α                                        (3)   (from Euler’s 2nd  law)

Check for the number of unknowns.   F,  aCX,  N,  α    (4 unknowns only 3 equations).
Therefore you need more information for a solution which comes from the kinematics.
The wheel will either roll or roll and slide.

Assume that the wheel rolls without sliding.  Check afterwards to see if this assumption
is correct by comparing the friction force with its maximum value.

From kinematics of acceleration between points C and D of the wheel:              

                                 aC =  aD + aC/D  = Rω2 j – Rω2 j + αk x R j  =  -  R α i

From (3)       α  =  ( - FR) / IzzC    So      aCX  =  R( - FR) / IzzC    Put into (1).

               P – F   =  m [ FR2 / IzzC  ]  so  P =  F [ 1 + mR2 / IzzC  ]

And     F =  P / [ 1 + mR2 / IzzC  ] =  5 / [ 1 + (13/32.2) (22/0.755) ] = 1.59 lb  (result)

Check on assumption:  Fmax = μ N  =  μW = 0.2(13) = 2.6 lb  so  F < Fmax  so wheel rolls
and assumption is correct.

Now  from Eq. (1),

  m aCX   =  P – F       so   aCX   = ( P – F ) / m  =  ( 5 – 1.59 ) / (13/32.2) =  8.44 ft/sec2         

     aC  =  8.44 i  ft/sec2   (result)                       

 


   Return to Notes on Dynamics

Copyright © 2019 Richard C. Coddington
All rights reserved.