Kinematics of a Particle in a Plane (using intrinsic coordinates

 

 

Example:  Sally is walking left to right with a constant speed, vo, in the x-direction along the

curve shown below.  The "hill" she walks up is given by  y(x)  =  8a3 / ( 4a2 + x2 ) .   Find Sally's acceleration when she reaches the top of the hill.  i.e.  at  (0, 2a).

 

 

                              xmpntkina.jpg

 

 

Strategy:  Apply the definitions for velocity and acceleration using intrinsic coordinates.

 

  v(t)  =  v et     and    a(t)  = ( dv/dt) et  +  ( v2/ρ) en     Note:  At  (0, 2a)  et  =  i   and  en   =  ˗ j

 

                  v(top)  =  v i     and    a(top)  = ( dv/dt) i  ˗  ( vo2/a) j  =  0 i  ˗  ( vo2/a) j         (result)

 

 

Check using rectangular coordinates:    v(t)  = dx/dt i  +  dy/dt j    Now  dx/dt  =  vo   and  d2x/dt2  =  0

 

 

dy/dt  =  (dy/dx) (dx/dt)  and  (d2y/dt2) = (d2y/dx2)(dx/dt)(dx/dt)  +  (dy/dx) (d2x/dt2)

 

  (d2y/dt2) = (d2y/dx2)(dx/dt)2  +  (dy/dx) (d2x/dt2)   =   (d2y/dx2)(dx/dt)2 

 

Now   y(x)  =  8a3 / ( 4a2 + x2 )   So   dy/dx  = [ ˗ 8a3 ( 4a2 + x2 ) ˗2 ] 2x  =  ˗ 16 a3 x ( 4a2 + x2 ) ˗2 

 

  d2y/dx2  = [ ˗ 16a3 ( 4a2 + x2 ) ˗2 ]  +  32 a3 x ( 4a2 + x2 ) ˗3 (2x) 

 

  d2y/dx2  = [ ˗ 16a3 ( 4a2 + x2 ) ˗2 ]  +  64 a3 x2 ( 4a2 + x2 ) ˗3

 

  d2y/dt2  = { [ ˗ 16a3 ( 4a2 + x2 ) ˗2 ]  +  64 a3 x2 ( 4a2 + x2 ) ˗3 } vo2

 

At the top of the hill     x = 0   d2y/dt2  =   ˗ 16a3 ( 4a2 ) ˗2  vo2  =  ˗ vo2 / a     

 

and                 a(top)  =  d2x/dt2 i  +  d2y/dt2 j  =  ˗ vo2 / a  j     (same result)

 

 

Click here for discussion of center of curvature and the "osculating" circle.

 



   Return to Notes on Dynamics

Copyright © 2019 Richard C. Coddington
All rights reserved.