Center of Curvature   (Locating center of curvature of osculating circle)

 

 

Example:  A particle, P, is moving along a path in the x-y plane as shown in the figure below.

Its position vector, rp , given at any time t is:

 

                                             rp(t)  =  ˗ 3t i  +  (t2  ˗ 3t  ˗2) j     ft

 

       Find the location of the center of curvature ,  rc  at t = 1 sec.

 

 

                                

 

 

Solution:           Use    rc  =   rp  +  ρ en       rp(1) = ˗ 3i  ˗ 4 j

                                    

Strategy:  1.  First find  en  using  en =  det/dt    then find  ρ  using   an  =  v2 / ρ

 

Here  et  is the unit tangential vector,  en  is the unit normal vector

 

        ρ  is the radius of curvature, and v  is the speed of the particle

 

 

       drp(t)/dt  =  ˗3 i  +  (2t ˗ 3) j     So  | drp(t)/dt  |  =  √ (18 + 4t2 ˗12t )

 

So    et  =   ˗3 i  +  (2t ˗ 3) j   / √ (18 + 4t2 ˗12t )

 

  det / dt  =   2 j / √ (18 + 4t2 ˗12t )  ˗  (1/2) [˗3 i  +  (2t ˗ 3) j ] [ 8t ˗ 12 ] / (18 + 4t2 ˗12t )3/2

 

  det / dt  =  { [ 12t ˗ 18] i  +  [ 8 t2 ˗ 24t + 36 ˗ 2(2t ˗ 3)2 ] j } /  (18 + 4t2 ˗12t )3/2

 

 

At  t  =  1 sec   det / dt  =  ˗ 6 i + 18 j  /  (10) 3/2   =  ˗ 6 i + 18 j  /  (10) √ 10  =  (3/5) [ ˗ i + 3 j ] /√10

 

And     | det / dt |  =   3/5               After algebra     en  =  det / dt   /   | det / dt |   =  [ ˗ i + 3 j ] /√10

 

Use       an  =  v2 / ρ   or     ρ  =  v2 / an              At   t = 1 sec              v  =  | drp/dt |  =  √ 10

 

 

Click here to continue with this example.

 



   Return to Notes on Dynamics

Copyright © 2019 Richard C. Coddington
All rights reserved.