Pipeflow   Type 2  Application                     

 

Example   Water flows from a reservoir which is open to the air.  The elevation, H, of the surface is 80 ft above the exit through a galvanized iron pipe with diameter of 1/6 ft.  Assume a minor loss occurs at the entrance to the pipe is  K = 0.5.  Neglect the minor loss at the pipe exit.   Length, L,

of the pipe is 100 ft.  Find the discharge, Q, from the pipe into the open atmosphere. 

 

 

             

 

 

Strategy:  Start by writing the energy equation between stations 1 and 2 and examining the unknowns.

Use this energy equation and the Moody Chart to determine the friction factor, f.  Then start the

iteration by assuming a large Reynolds Number (turbulent flow) and use the relative roughness,

e/D,  to get the first value of the friction factor from the Moody Chart.  Then use the energy

equation to obtain the initial value of fluid velocity at station 2 .  Use this velocity to find a new

value for the Reynolds Number and iterate until the change in friction factor is small.  Then use

the energy equation again to find the final value of fluid velocity, V2.  The discharge is then the

product of exit velocity time the area of the pipe.

 

 

Write the energy equation between stations 1 and 2 in terms of head (ft).

 

         P1/ρg  +  V12/2g  +  z1  =   P2/ρg  +  V22/2g  +  z2  +  Head Loss from 1 to 2

 

   Head Loss from 1 to 2  =  f(L/D) V22/2g  +  K ) V22/2g  =  [f(L/D)  +  K )] V22/2g 

 

Here    P1  =   P2  =  0 psig    z1  =   80 ft   z2  =  0 ft (datum)     V1  ~  0  (large tank)    

 

             z1  =     V22/2g   +  [f(L/D)  +  K )] V22/2g  =  [ 1  +  [f(L/D)  +  K )] V22/2g     (ft)        (1)

 

  The unknowns are:  f   and   V2     so iteration will be required to find the discharge, Q.

 

 

Click here to continue with this example.

 



Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.