Example of the Method of Reduction

 

 

Example:   The differential equation for a viscous fluid, contained between two infinitely

long, vertical, concentric cylinders, where the inner cylinder is rotating at a rate, ω,  and

the outer cylinder is fixed is given by:

 

                                        r d2y/dr2  +  dy/dr  -  y/r  =  0                                             (1)

 

Let the inner cylinder have radius, a, and the outer cylinder have radius, b.  The boundary

conditions are: 

                                    y(a) =  a ω     and   y(b)  =  0                                     (2) and (3)

 

 

Strategy:   To obtain one solution of this differential equation try a power form of

solution such as     y = rn .  The simplest one, if it works, is for n = 1.  i.e.  y1(r)  = C1 r.

 

So  y1''  =  0,  y1'  =  C1   and  - y1 /r  =  - C1 .   Thus  C1   -  C1  =  0   and 

 

Therefore              C1  r  is one solution to the d.e. (1).

 

 

For the second solution using the method of reduction assume

 

                       y2(r)  =  r w(r)  and put into d.e. (1)      where w(r) is an unknown function

 

y2'(r)  =   w  +  r w '   and   y2''(r)  =  2 w +  r w ''

 

So  r d2y2/dr2  +  dy2/dr  -  y2/r  =  2 r w'  + r2 w''  + w + rw  - w  =  0

 

       r2 w''  + 3r w'  =  0     or   r w''  +  3 w'  =  0

 

 

Now let  w'  =  v    so   r v'  + 3 v  =  0   or  v' + (3/r) v  =  0

 

 which can be integrated using an integration factor, IF:       If = e ∫(3/r) dr  =   e 3 ln r  =  r3    

 

And    r3 [ v' + (3/r) v ]  =  0    or  r3 v' + (3r2) v ]  =  0

 

Finally     d/dr [r3 v]  =  0    r3 v = C1   ,   v  =  C1  / r3  =  w'

 

Integrate to obtain:  w(r) = C2/r2  +  C3 

 

Now  y2(r)  =  r w(r)  =  C2/r  +  C3 r

 

If  C3 = 0 and C2 = 1   y2(r)  = 1/r  and if  C3 = 1 and C2 = 0      y2(r)  = r 

 

 

Click here to continue by applying the boundary conditions.

 


Return to Notes on Fluid Mechanics


Copyright © 2019 Richard C. Coddington
All rights reserved.