Relative Velocity and Acceleration withTranslating and Rotating Frames 

 

 

Example:  Block  R  slides to the left at a constant speed  vR  while a bar  B  leans against it always

remaining in contact with the bar.  Let  P  be the point in the bar in contact with point  S, a point

in the block.  The lower end of the bar, Q, has a velocity vQ i m/sec and an acceleration   aQ i  m/sec2. 

Let  xy  be a fixed frame of reference with unit vectors  i  and  j .  Let  x1y1 be a translating/rotating

frame with origin at  Q  attached to the bar with unit vectors  i1 and j1 .  See the figure below.

 

 

                              

 

 

The following data apply:  d = 4 m,  h = 3 m,  vR = - 5 m/sec, ,  aR =  0, vQ = 20 m/sec, aQ = - 36 m/sec2

 

Find the acceleration of  P in the fixed frame of reference F.  i.e.  aP|F

Find the acceleration of P relative to the bar in terms of components in the fixed frame.  i.e. aP|B

Find the angular acceleration of the bar.

 

                         

Since  P is a point in the bar coincident with  S, a point in the block and block R is sliding ,

the acceleration of  P  is     aR i   but  aR = 0  so    aP|F  =  0 i  m/sec2                (result)

 

To find the acceleration of  P relative to the bar and the angular acceleration of the bar you need to

apply the general relative acceleration equation for a translating/rotating frame of reference.

 

    aB  =  aA  +  aB|1  + α x rAB  - ω2 rAB +  2 ω x vB|1 

                Relative Acceleration Equation

 

 

 

For this example the equation becomes (written for points  P  and  Q )

 

                                        aP|F  =  aQ|F  +  aP|B  +  αB x rQP - ωB2 rQP +  2 ωB x vP|B 


Note:  The values of  ωB  and of  vP|B  come from the relative velocity analysis for this

example.   The results were:   ωB  = 3 rad/sec  and  vP|B  = ˗  20 i1  m/sec

 

Click here to continue with this example.

 

 



   Return to Notes on Dynamics


Copyright © 2019 Richard C. Coddington
All rights reserved.