Rolling    (example continued)

 

 

aC  =    aP  +  α x rPC  ˗  ω2 rPC  =  [1 + r/(R ˗ r)] r ω2 j   +  α k x r j  -  ω2 r j

 

aC  =     r/(R ˗ r)] r ω2 j   -  r α i  = - (2)(˗ 3) i  +  [ 2 / (10 ˗ 2)] (2) (42) j = 6 i + 8 j  in/sec2   (result)

 

 

Apply the relative velocity equation between points A and P.    Recall  vP  =  0 i  +  0 j 

 

            vA  =    vP  +  ω x rPA  =  vP  +  ωk x (ri + rj)  =  - i  +  j

                

             vA      =  - 8 i +  8 j in/sec                   (result)

 

 

Next apply the relative acceleration equation between points   A  and   P.

 

aA  =    aP  +  α x rPA ˗ ω2 rPA  =  [1 + r/(R ˗ r)] r ω2 j   +  α k x (ri + rj)   -  ω2 (ri + r j)

 

aA  =  40 j   -  r α i  + r α j   -  2 i ˗ r ω2 j = 6 i + 8 j   + 6 i  - 6 j   -  32 i ˗ 32 j

 

aA  =   [  6 ˗  32 ] i  +  [ 40 ˗ 6  ˗  32 ] j  =  ˗  26 i  +  2 j   in/sec2                            (result)

 

 

Apply the relative velocity equation between points C and O.   

 

      vC  =    vO  +  ω x rOC  =  0 i + 0 j +  ωOCk x [˗ (R ˗  r)] j]  =  OC  i

 

But   vC  =  -  8 i  =  OC i  which gives   ωOC =  ˗ 1   So    ωOC  =  ˗ 1 k  rad/sec            (result)

 

 

Next apply the relative acceleration equation between points   C  and   O.

 

aC  =    aO  +  αOC x rOC ˗ ωOC 2 rOC  =  0 i + 0 j   +  αOC k x [ ˗  (R ˗ r)] j]    -  ωOC 2 [ ˗ (R ˗  r)] j] 

 

aC  =    (R ˗  r)] αOC ( ˗ i )  +  ωOC2 (R – r) j  =  8 αOC i  +  8 j   =  6 i + 8 j 

 

Therefore   8 αOC  =  6      αOC  =  ¾       αOC  =   ¾ k  rad/sec2                (result)

 

 

Click here to continue with this example.

 

 

 


   Return to Notes on Dynamics


Copyright © 2019 Richard C. Coddington
All rights reserved.