Fourier Series              Click here to skip to examples.              

 

 

In a Nut Shell:  A Fourier Series is an infinite series of sine and cosine terms used

to represent any periodic function.  Suppose  f(t)  is a periodic function.  Then the

Fourier Series expansion of f(t) is

 

 

                              

    f(t)  =     ao /2  + ∑   an cos nt   +  bn sin nt

                             n = 1

 

 

 

The objective is to determine the Fourier coefficients,    ao,  an  and  bn .

 

The Fourier Series representations of the function, f(t),  may contain only

cosine terms, only sine terms, or both cosine terms and sine terms depending on

whether the function, f(t), is an even function, an odd function, or neither even

nor odd.  More information on details on these terms follows.

 

Why discuss Fourier Series?  

 

One reason is that it provides a way to represent more complicated (more realistic)

forcing functions as, for example, with applications to vibration problems with a

forcing function, f(t).   Let    x  =  x(t)  where x(t) is the displacement of the mass, m,

with time  t, c is the damping constant, and k is the spring rate.  The differential

equation of motion for forced vibrations of mass, m,  is:

 

                                       m d2x/dt2  +  c dx/dt  +  k x  =  f(t)

 

 

What is a periodic function?  If P is the period of the function, f(t), then the value

of  f(t)  repeats for every period.  In other words,  f(t)  =  f (t+ P).   The period of

a function, f(t), can take on any value.

 

  Case 1:  f(t) has a period, P, of  2π.    The Fourier series expansion of f(t)  is then

 

 

                              

    f(t)  =     ao /2  + ∑   an cos nt   +  bn sin nt

                             n = 1

 

where  ao,  an,  and  bn   are the Fourier coefficients.

 

 

                             π                                π                                             π

            ao = (1/π) ∫ f(t) dt ,    an  =  (1/π) ∫ f(t) cos nt  dt ,   bn  =  (1/π) ∫ f(t) sin nt dt

                           ˗π                               ˗π                                            ˗π

 

 

Click here to continue with discussion of Fourier Series.

 




Copyright © 2019 Richard C. Coddington

All rights reserved.