Approximate Area using   n  rectangles --  The Riemann Sum

 

In a Nut Shell:  Premise  The area underneath the curve  y = f(x)  from x = a  

to  x = b  can represented by a collection of small rectangular areas whose sum

approximates the area underneath the curve.  There are three common sampling

points used to establish the area of each rectangle - -  the right end point, the

midpoint, and the left end point.  The right end point option is illustrated below.

 

Procedure using right endpoints as the sampling points.

 

In general, break the area under the curve,  y  =  f(x),  for   a    x    b

into   n   rectangles  each of width   Δx = ( b – a ) / n    and    xi*  =  a + i Δx

 

Let     yi  =  f(xi*)  =  y-value of the right endpoint for each individual rectangle.

 

The approximate total area is the finite Riemann sum of the  n  individual rectangles.

 

       b                        n

       ʃ f(x) dx   =       Σ f(xi*) Δ x      is called the Riemann Sum    

       a                      i = 1

 

For the figure below, the approximate total area is then   =   ( y1 + y2 + y3 + y4 ) Δx

The exact value of  total area is:

                                                             b                                n

                                                             ʃ f(x) dx  =   lim        ∑ f(xi*)  Δ x 

                                                            a                  n → ∞   i = 1

 

 

            

         

Click here for figures depicting the effect of sampling points on estimation of areas for

increasing and for decreasing functions.

Click here for examples of summing areas.

 

Skip to an example using a finite number of rectangles. 



Return to Notes for Calculus 1

Copyright © 2019 Richard C. Coddington

All rights reserved.