Stokes’ Theorem

 

 

Background:  Recall that Green's theorem gives the relationship between a line

integral around a simple closed curve, C, in the x-y plane to a double integral over

the plane region R bounded by C.   See the figure below.

 

 

                

 



 

 

 

In its “curl form” 

Green’s Theorem is:   F  .  dr   =    F  . T ds   =        curlz F   dA     

                                    C                    C                        R

where

                 F  =   P(x,y) i  +  Q(x,y) j   =   the vector field

               dr   =  dx i  +  dy j    =  T ds

                 T  =  the unit tangential vector to the path C

                ds  =  the arc length along the  curve, C

                dA =  the element of area in R

 

                                                                       

                                i              j              k

Note:  curlz F =     ∂/∂x        ∂/∂y        ∂/∂z    =   [∂Q/∂x  -  ∂P/∂y] k             

                            P(x,y)     Q(x,y)       0

 

In other words,  curlz F    is the z-component of curl F  =  curl F  . k

 

Click here to move on to a discussion of Stokes’ Theorem.

 




Copyright © 2018 Richard C. Coddington

All rights reserved.