Vector Fields           Click here for discussion of conservative vector fields.

 

 

In a Nut Shell:  Functions that assign vectors in a plane or in space are termed

vector fields.  You are familiar with vectors such as the unit vectors  i, j, k along

the x, y, and z-axes.

 

A vector field  in a plane takes the form   F(x,y)  =  P(x,y) i  +  Q(x,y) j    where

P(x,y) and Q(x,y) are scalar fields. (scalar function).  Here  P(x,y) is the component

of F(x,y) in the x-direction and  Q(x,y) is the component of F(x,y) in the y-direction.

 

 

 

A vector field can also be defined by a vector valued function at each point (x,y,z)

in space such as

                                        F(x, y, z)  =  P(x,y,z) i     +  Q(x,y,z) j     +  R(x,y,z) k     

 

 where  P(x,y,z), Q(x,y,z), and R(x,yz) are scalar fields       (scalar function)

 

There are several theorems dealing with vector fields that are important in your

study of multi-variable calculus.  So it is important that you understand and

can work with vector fields.

 

 

 

 

 

The Gradient of a scalar field,  Grad F,   is defined as follows:

 

 in a plane      Grad F  =  ∂F/∂x i  +  ∂F/∂y j   

 

in space          Grad F  =  ∂F/∂x i  +  ∂F/∂y j   +  ∂F/∂z k

 

 

 

 Definition of the Divergence of a Vector Field,  F ,  div F

 

in a plane            F(x, y, z)  =  P(x,y,z) i     +  Q(x,y,z)

 

                      div F   =  ∂P/∂x i  +  ∂Q/∂y j   

 

in space               F(x, y, z)  =  P(x,y,z) i     +  Q(x,y,z) j     +  R(x,y,z) k       

 

                       div F   =  ∂P/∂x i  +  ∂Q/∂y j   +  ∂R/∂z k 

 

 

 

 

Click here to continue discussion of vector fields.

 




Copyright © 2017 Richard C. Coddington

All rights reserved.