Kinetics – Constrained Motion of a Particle in a Plane      (continued)            

 

Step 4A:  Geometric constraints.  Use of the "chain rule" for taking the derivative when

deriving the geometric constraints.  i.e.

 

  dy/dt  = (dy/dx)(dx/dt)    Suppose  y(x) = A sin bx,    Here  dy/dx  =  A b cos bx.

 

then  dy/dt = (Abcos bx) dx/dt                                                                                                         (1)

 

and  d2y/dt2  =  ˗ Ab2 sin bx) (dx/dt)2  +  Abcos bx (d2x/dt2)                                                          (2)

 

 

Step 4B:  Kinematic constraints involving speed:

 

Speed = v(t)  =  √ [ (dx/dt)2  +  (dy/dt)2 ]                                                                                         (3)

 

 Or           v2  =   (dx/dt)2  +  (dy/dt)2                                                                                                (4)

 

 

Suppose the kinematic constraint, speed v is prescribed,     say v = Vo  and  y(x)  =  A sin bx.   

Then from above,   dy/dt = (Abcos bx) dx/dt

 

and by (2)         v2  = Vo 2 =  (dx/dt)2  +  (Abcos bx)2 (dx/dt)2    and  from  (3)

 

         Vo 2  =   (dx/dt)2[1 + (Abcos bx)2]     so  (dx/dt)2  =  Vo 2 / [1 + (Abcos bx)2]     and

 

          dx/dt  =  ± Vo /√ 1 + (Abcos bx)2]                                                                                          (5)

 

Note:  For a particle moving in the + x-direction, use the + sign.  If in the ˗x-direction, use the ˗ sign.

 

 

Step 4C:  Kinematic constraints involving change of speed:

 

Suppose the kinematic constraint involving change of speed,  dv/dt is prescribed,

say    dv/dt = C    Note:    C  could be positive, negative, or zero.

 

Use either (3) or (4) to evaluate  dv/dt   .   i.e.

 

From (4)    2v dv/dt  =  2 (dx/dt)(d2x/dt2)  +  2(dy/dt)(d2y/dt2)    so

 

                    v dv/dt  =   (dx/dt)(d2x/dt2)  +  (dy/dt)(d2y/dt2)                                                             

 

So  d2x/dt2  =   [ v dv/dt ˗  (dy/dt)(d2y/dt2) ] / (dx/dt)                                                                       (6)

         

Put (6) into  (2) to find  d2y/dt2  .

 

 

Click here to continue with discussion.

 



   Return to Notes on Dynamics


Copyright © 2019 Richard C. Coddington
All rights reserved.