Kinetic Energy of a Body in a Plane

 

 

Example:  In the figure shown below, bar AB of mass m1 has an angular velocity of  ω1 k rad/sec,

bar BC of mass m2 has an angular velocity of ω2 k rad/sec, and disk, with center C,

of mass M and radius r has an angular velocity of  ˗  ω3 k rad/sec.  Let the length of bar AB

be L1 and bar AB L2.  All pin connections are smooth.  D denotes the center of bar AB. 

E denotes the center of the bar BC.  Calculate the kinetic energy of bar AB and the disk.

 

                                              

 

                                      

Recall that he result the total kinetic energy of the rigid body, T (for plane motion) is  

 

T = ½ m vC2 + ½ ICzz ω2

KE of translation + KE of rotation

   

 

The kinetic energy for bar AB then equals  ½ m1 vD2 + ½ ICzz ω12  where  ICzz = (1/12) m1 L12

 

From kinematics:  vD = vA + vD/A = ω1 k  x (- L1/2) i = - L1 ω1/2 j

 

     TAB =  ½ m1(- L1 ω1/2)2 +  ½ [(1/12) m1 L12]  ω12 =  1/6 m1 L12 ω12           (result)

 

Note also that bar AB rotates about the smooth pin at A.  So for pure rotation

the kinetic energy for bar AB is

 

     TAB = ½ IAzz ω12 = ½ (1/3 m1 L12) ω12  = 1/6 m1 L12 ω12                       (same result)

 

 

The kinetic energy of the disk is Tdisk  = ½ m vC2 + ½ ICzz ω32

 

The mass moment of inertia of the disk about its mass center, ICzz = ½ M r2

 

From kinematics:  vC  =  vB + vC/B  =  vA + vB/A  +  vC/B  = 0 + vB/A  +  vC/B 

 

                              vC  =  ω1 k  x (- L1) i  +  ω2 k  x (- L2) j  =  L2 ω2  i  - L1 ω1 j

 

vC2 = vCvC = ( L2 ω2 )2 + (L1 ω1)2    So  the kinetic energy of the disk is

 

   Tdisk  =  ½ M [( L2 ω2 )2 + (L1 ω1)2  ]  +  ½ M r2 ω32                                     (result)

 

 

Click here for another example.

 



   Return to Notes on Dynamics


Copyright © 2019 Richard C. Coddington
All rights reserved.