Kinematics of a Particle in a Plane (using polar description, example continued)

     

                              

Recall    vP = 3i + 6 j   ft/sec   and   aP = 18 j   ft/sec2 

 

Strategy:  Use the dot product of these vectors with unit vectors in the radial and transverse

directions to find the radial and transverse components of velocity and acceleration of the particle.  Start with the position  vector,  r,  of particle  P at (1,1).  r  =  i + j .  | r | = √2   and  er  =  r / | r |

 

 

                                                    

 

 

So the unit vectors are:

 

    er  =  (1/√2) ( i + j)   and since  eθ is normal to  er  and in the direction of increasing  θ

 

    eθ  =  (1/√2) (˗ i + j)  

 

                                    

Now the component of velocity in the radial direction is  

 

       vr  =  vP  er   =   (3i + 6 j) ● (1/√2) ( i + j)  

 

So    vr  =  9/√2  ft/sec and  component of velocity in the transverse direction is

 

        vθ   =   vP  eθ  =  (3i + 6 j) ● (1/√2) ( - i + j) =  3/√2  ft/sec

 

Likewise  ar   =    aP  er  =  18j ● ((1/√2) ( i + j)  =  18/√2   ft/sec2   and

 

                aθ    =    aP  eθ  =  18j ● ((1/√2) ( - i + j)  =  18/√2   ft/sec2  

 

 

Click here for another example.

 

 

 



   Return to Notes on Dynamics


Copyright © 2019 Richard C. Coddington
All rights reserved.